
JOURNAL O~ APPROXlMA 1I0Nl HEOR Y 39. 39-53 (1983)

Euler-Maclaurin Expansions for Integrals over Triangles

and Squares of Functions Having Algebraic/Logarithmic
Singularities along an Edge

AVRAM SIDI

Computer Science Department.
Techniun. Haila nooo. Israel

Cummunicated hI' aced Shisha

Received November 19. 1981: revised October 12. 1982

We derive and analyze the properties of Euler-Maclaurin expansions for the
differences .1,1 x'(log x)"I(x.I') -- Q~III. 5> I. 5' = 0. I. where S denotes either
the simplex l(x.Y)lx+y,;;,1. X?O.y 01 or the square l(x.y)I0,;;,x",1.
o Y';;' II. and QZlf I is a combination of one-dimensional generalized trapezoidal
rule approximations.

1. I NTROLlUCTION

In this work we are interested in deriving Euler-Maclaurin expansions for
the singular double integrals

Qlfi= r rw(x)f(x.y)dxdy. T=i(x.y);x+y~Lx;;' 0.)';;' 0[. (1.1)
. r·

Q'lfi = I w(x)f(x.l') dx d1'. T' = \(x.)')IO~x~ I.O~)'~ If. (1.2)
'f

where

w(x) = x'(log x)' . s > -1.s' =0. L (1.3 )

and f(x.)') is as many times differentiable as needed. Specifically we are
looking for asymptotic expansions. as h ---> 0+. for the differences Ll l1 lf I =
Qlfi - Qhlfl and Ll~lfi = Q'lfl- Q;,lfi. where Ql1lfi and Q;,lfl are
approximations to Qlf I and Q' If \. respectively. obtained as some
combinations of one-dimensional generalized trapezoidal rule approx
imations with step size h.

We now state some results which bear relevance to our derivation of the
Euler-Maclaurin formulas for Qlf i and Q'lf i·
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THEOREM l.l (See Steffensen 18, Section 141). Let the Jimction g(x) he
2m times d[fJerentiable on Ia, bland let h = (b - a )/n, where n is a positil'e
integer. Let f: be a fixed constant satisfying 0 ~ [; ~ I. Then

.h n 1

D(h)=1 g(x)dx-h ~ g(atjhtch)
~ (l ,. ()

where

+R 2m lg;(a,b)l,

R 1'( b)l=h2ml,·h82mlc--(x--al/hl-B2n,(C) 12",,(.)/.
2m g, a, 2 , g.X LX.

'(I (m).

( 1.4)

(1.5 )

Here BIl(x) is the Bernoulli po~vnomial of degree,u and SJ,!:} is the periodic
Bernoullian function of order ,u.

Since 8
1l

(x) are bounded on (-00,00), it follows that

IR2mlg;(a,b)(a,b)II~M2f1,(b-a}h2m max Ig '2ml(x)l, (1.6)
II (,X<, h

where

M 2m = max 182m (c +x) - B2m(f:)1/(2m)!
~c X'::J

(1.7 )

and, therefore, is independent of h. Consequently, ifg(x) is infinitely differen
tiable on IG, b J, then D(h) has an asymptotic expansion of the form

The following result is due to Navot 141. See also Naval 151.

THEOREM 1.2. Let the function g(x) be 2m times differentiable on 10, 11

and let G(x) = x'g(x) for -I < s < O. Let h = lin, where n is a positive
integer. Then for 0 < c ~ I,

.1 n I

D(h) = I G(x) dx - h ~ G(jh + ch)
- 0 j ()

2m I B (') 2m I Y( )\,' ~G(Il-I)(I)hll_ \,' (,-S-j.i,/;

u-j j.i! Ii () j.i!

XgIUI(O)hu+s+1 +P2m' ( 1.9)
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where W, £) is the generalized Riemann zeta function initially defined for
Re t > 1 by ((t, £) = '[f'~ 0 (k + £) ~t, and then continued analytically, and

as h~. 0+. (1.10)

Noting that ((-j,£) =-Bjt I (£)/(J + 1), j=O, 1,... , Navot [41 shows that
(1. 9) reduces to (1.4) in the limit s -. O.

Remark. The result of Theorem 1.2 holds also for s > 0 since for this
case the integrand can be written in the form G(x) = xru(x), where
-1 < r <0 and u(x) is at least as smooth as g(x) at x = O. Actually r = s - §

and u(x) = xi'g(x), where § is the smallest integer greater than or equal to s.
It is clear that u(i)(O) = 0, for 0 <i <§ - I, hence the sum that contains the
zeta functions in (1.9) becomes );,mo'~1 (((-S-I'J)/I'!) gl')(O)h' s+1

which is simply .[;'1110 I (((-s - v, t:)/I'!) glil(O) h,+st 1+ 0(h 2m ) as h-> 0+.
since the terms with V? 2m - f in the last summation are O(h 2m) as h -. 0.
The summation that contains the Bernoulli polynomials stays the same.
Finally, when g(x) is infinitely differentiable on 10, II, D(h) has the
asymptotic expansion

as h-.O+, (1.11)

for all s > -1.
Starting with Theorem 1.2, Navot 151 proves the'following:

THEOREM 1.3. If in Theorem 1.2 we let G(x) = g(x) x' log x, -1 < s < 0,
then

2m-l 2m -- J 2m I

D(h)= \' a"h"+logh \' /3"h"~S+'+ \' /"h"~S~'
f..l 1 u (J u ()

as h -. 0+, ( 1.12)

and if we let G(x) = g(x) log x, then

2m 1 2m I

D(h)= \' a~h" +logh \' fJ~h"+1 +0(h 2111
) as h---> 0+, (1.13)

u I u 0

where a", /3", Y", a~, /3~ are constants independent of h and they depend
solely on g and its derivatives evaluated at x = °and x = 1. (1.12) can be
obtained by formal~v differentiating both sides of (1.9) with respect to s.
(1.13) can be obtained by letting s=O in (1.12).
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Remark. Like (1.9), (1.12) too can be shown to hold for all s > -I.
Again, when g(x) is infinitely differentiable on 10, I I. D(h) in (I. 12) and
(1.13) have asymptotic expansions as h, 0 t. similar to those given in (I.g)
and (1.11).

Other facts that will be of use in the remainder of this work are

where B II are the Bernoulli numbers.

B," 1"'- O.

and

((I. I) = ((r).

where ((I) is the Riemann zeta function.

,u = L 2 ..

,u = O. I. ..

( I. 15 )

(1.16)

( I. 17)

2. EULER-MACLAURIN EXPANSIONS FOR Qlf I:

THE CASE S' ~- 0

THEOREM 2.1. Lei f(x. y) be 2m limes differentiable on Ihe simplex r

defined in (1.1). i.e., lei all parlial derivalil'es off(x. .1') (!/Iolal order ~2m
exisl and be conlinuous on T. Lei h = I/n. where n is a posilive inleger, and
lei I: be a fixed constanl satisJ.I'ing 0 ~ I: ~ l. Let Qlf I be as in (t.l) and
(1.3) with s' = O. Define

II I " I I

Q,J/I = h' \' Uh )' \' /Uh.jh ~ I:h). (2.11
I I I II

Then

"'l.1l/ I ~ 1/1 I

/1 h l/1 = QI/I QiJlfl=
\. a/,h/' -i- \' b/,h' /, .

o,)/lI" (2.2 )
/, I /, II

Il'here

o'm .0. O(h'III) as h ~ 0+. (2.3 )

and the coefficients a/" bk are independent of h. (The expressions for a/" h,
are complicated and will be given in the proof below.)

Proof We start by writing Qlfl as an iterated integral. If we define

.\ \-

F(x) = \
'11

f(x. y) dr. (2.4)
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.1

Qlfl = I x'F(x) dx.
"(1

43

(2.5 )

Since f(x, y) is 2m times differentiable on T. F(x) is 2m times differentiable
on 10, 1 I. Therefore, Theorem 1.2 applies to (2.5) and we have (taking c = 1)

n 1 1m 1

i 1 , 1

where

2m- I

+ \' d,h,."I+ p2m ,
, (I

B,(l) I SF( )11' III
c,=-~ x x x I'

d = _ ((-5 - k) F1ki(0)
, k! '

k = 1.2... "

k=O, I,,, ..

(2.6)

(2.7)

and P2m = 0(h 2m ) as h -t 0+. In the first summation on the right-hand side of
(2.6) the term with i = n is missing since F(nh) = F( I) = O. Also c 1 = 0 for
the same reason. In (2.7) we have also used (I.I 7).

Let us now approximate F(ih) by the generalized trapezoidal rule with
step size h. This is possible since I - ih is a multiple of h. From Theorem 1.1
we then have

.1- ih

F(ih) = I f(ih, y) dy
'(1

II i I

= h \' f(ih.jh + "h)
i (I

where

(2.8 )

p=O, I, .. " (2.9)

and from (1.6)

Ir2m.il~M2m(l-ih)h2m max I ~,,';,2:'~J(X'Y) .
~x.Y)ET (~vl.

with M 2m as defined in (1.7).

(2.10)
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Substituting (2.8) in the first summation on the right-hand side of (2.6).
recalling (2.1). and rearranging, we obtain

11 I

h " x'F(x)lx ih
i I

where

11 I

P2m=h " (ih)' rzm .i '
i I

hence, from (2.10),

since

(2.12)

(2.13 )

11 J .l

h " (ih)'(I--ih)=! x'(I--x)dx+o(l)
01 ~IO

as h->O+, (2.14)

from Theorem 1.2.
Now 'IIp(x) is 2m - p times differentiable on 10. II and 'II{,(nh) = 'II{,( I) = O.

Using this together with the fact that s > -I, and applying Theorem 1.2. this
time to the term inside the square brackets in the summation on the rihgt
hand side of (2.11), we have

Il I

h ,- (ih)' 'II (ih)
- p
i I

where

as h --> 0+. (2.16)

Note that since 'IIj I) = O. the first summation on the right-hand side of
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(2.15) acually starts with v = 2. Substituting (2.15) and (2.16) in (2.11), we
obtain

n-I

h '\' xSF(x)lx~ih
i= I

II I h U ' ,-
x I

2m-1 2m-u B (e) r( S ')
'\' '\' _u_,,- -~ (.. ) (0)hutl'+s+I+0(h2m)ash-.O+.- - , v' ljIu-1

u I I'~ 0 /1. .
(2.17)

Finally, substituting (2.17) in (2.6), we obtain (2.2) and (2.3). The coef
ficients G k and bk are now given by

.1

G 1 = -BI(e) I x'ljIo(x) dx,
00

'\' Bu(e) B .. I S l(x)III' III
- --,---, X ljIu iX I

u+'"";-k /1. V.
U.l'): I

bo = -((-s) F(O),

b=- ((-s-k) Flkl(O)
A k!

k = 2, 3,.... 2m - 1,

ut .. k
u 1,1'>0

Bu(e) ((-s - v) I,) (0)
, ,1jIu- I '

/1. v.
k = 1, 2,..., 2m - 1. (2.18)

where we have used (1.14) and IjIp(I ) = o. I

The long expressions given in (2.18) can be put in a more compact form
as follows: From (2.9), IjIp(x) can be expressed as

.I-x oPtl

IjIp(X) = I '.J,PtJ(x,y)dy,
-0 uJ

p = 0, I, .... (2.19)
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Let us define IjJ I (x) by letting p = - 1 in (2.19). It is clear that

Let us also defIne

(2.20)

IX\~j/)(x)11 1'=1 t'VJp(t)dl = f)/,(X).
'0

Then we have

[J =c 1, U. I. ... (2.21 )

/= o. I. 2.. (2.22 )

Recalling that B,,(x) =c Bo I. a, and b, can now be exprcsseu as

\'

.u I I k
H.I' IJ

B)I;) B, I

0;, I ( I ).
,11! I'!

k - I. 2.... ,

(2.2.3 )

\'

u i I' f..
It.!" (1

B,,(I;) (( S I')
.-------V/;," ,(0).

.u! 1"
k= O. I.....

Remark. When the function f(x, r) is infinitely uifferentiable on T. then

the Euler-Maclaurin expansion in (2.2) can be continued indefinitely. anu we
have as h > 0.,., for all S> I.

jhlfl~ \' a,//+ \' h,h'·"'.
,I.:, I A f)

(2.24 )

COROLLARY. UI(x.y) is a polynomial in x and y of degree q, say. Ihell
h, = 0 for k ~ q + 2, i.e .. Ihe series '-,' 0 h, h \ ,. I has aellwl/y a ./illile

number of lemlS.

Proof It is not difficult to show that VJI'(x) is a polynomial in x of degree

at most q - p. for p = I. 0, 1,.... q. Hence Ij/;,'I(X) = 0 for I' ~ q- P + I. The
result now follows easily. I

We now go on to investigate the nature of the a, and b,.
A simple analysis shows that for p = O. I..... I' = O. I.....

so that

(.1 (./1 .

I \ - T~-; -(~\-'I)./ (x. y), (2.25 )

(2.26)
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(2.27)

where r is the polygonal arc Jommg (0. I). (I. 0). (0.0) In this order and

l1'(x . .l') = x'//2 along the line x + J' = I and l\'(x . .l') = x' along y = O. and
dl is the line element along r. Similarly it can be shown that

F" I ( 1) = -- " '
i· i J.. I

i.j 0

(' (i (I

( -;-~--:-.) ~f(x.Y)lll."I·
C'X cy c',)'

(2.28 )

Hence we conclude that the contribution to the a k comes from the derivatives
of f(x.l') at (I. 0). i.e.. the corner across he line of singularities. and from
certain integrals of f(x. y) and its derivatives along the two sides of T on
which there are no singularities. From (2.25) we have

,(: ?)' j:P
Ij/p(I'I(O) = (~- -:-. ~.. pf(x.y)l,o I)

cx ry ry .

(2.29)

Also making the change of variable of integration y = ( I~ x) r in the
integral expression for F(x) given in (2.4). and differentiating k times with
respect to x. we obtain

.1

F1k)(X) = I 1(I-x)D~--kD~ Ilf(x. (l-x)r)dr.
'Il

(2.30)

where we have defined Dr = i'/ex - re'/cy. Setting now x = 0 In (2.30) we
obtain

.1

F'kl(O)= I (Dk-kD k l)f(x.y)l, ody.
'11

(2.31 )

where D = a/ax - yO/ay. Therefore. we conclude that the contribution to the
bk comes from f(x.y) and its derivatives at the points (0.0) and (0. I) and
their integrals along the line of singularities x = O.

Some special cases. (a) c = !. Substituting (1.16) in (2.23) it is clear that
(]k = O. k = I. 3. 5..... but none of the bk's vanish in general.
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(b) /; = 1. If we substitute (1.15) in (2.23) we realize that in general
none of the ak's are zero. However, if Qhi f I in (2.1) is modified to read

n I n i

Qhlfl=h 2
\' (ih)' \"'f(ih,jh),
iIi n

(2.32)

where L"~ (I aj = L: / aj + (an + u v)/2, then using the same techniques as
before, it can be shown that

m I 2m I

U I U n

as h-40+. (2.33)

where a2u and bk are as given in (2.23) with t; = I, except that the terms with
i1 = I are omitted in both summations.

3. EULER-MACLAURIN EXPANSIONS FOR Qlf I:
THE CASE S' = I

In this section we state without proof the Euler-Maclaurin expansions for
the case s' = 1. Letting w(x) = Xl log x, we now define Qhlfl by

!/ I f1 i I

Qhlfl = h 2
\ ' w(ih) \' /(ih,jh + Bh).
iii ()

where h = 1In, n a positive integer.

(3.1 )

THEOREM 3.1. Let f(x, y) be infinitely differentiable on T and lei Q1 f 1

be as in (1.1) with s' = I, i.e., w(x) = Xl log x. Then as h --+ 0+.

Qlfl~Qhlfl~ \' a~hu+logh \' b;,hu'''l+ \' c;,h'" '.(3.2)
1.1 I lJ. 0 II (I

where a~, b;" and < are constants independent 0/ h.

THEOREM 3.2. Let f(x,y) be infinitely differentiable on T and let Qlfl
be as in (1.1) with s = 0, s' = I, i.e., w(x) = log x. Then as h --+ 0+,

Qlfl-Q Ifl~ \' a"hu+logh \' b"hu · 'h """- M _ U

u I u ()

where a~ and b~ are constants independent of h.

(3.3 )
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The proofs of these two theorems are exactly the same as that of
Theorem 2.1, the only difference being that use is made of Theorem 1.3 with
(1.12) and (1.13), respectively, instead of Theorem 1.2. Expressions for a~.

b~, c~, a~', and b~' can be found in terms of f(x,y) and its derivatives and
their integrals but this will be omitted here.

We shall only state that (3.2) can be formally obtained by differentiating
both sides of (2.24) with respect to s. (3.3) is then obtained by letting s =°
on both sides of (3.2). When f(x, y) is a polynomial in x and)" of degree q.
say, then b~ = 0, <= 0, b: = °for i1? q + 2.

For /: = ~ and s not an integer it can be shown that a ~ = 0, i1 == I. 3. 5.....
in (3.2).

For 1;= I. if we replace Qhlfl in (3.1) by

n 1 rf I

Qhlfl=h 2
\' w(ih) \'''f(ih,}h).
iIi II

then for s not an integer

Jh[fl=Qlfl-Qh[II~ \' as"hcu+logh \'
u 1 u (I

(3.4 )

+ \' (" h" + ,+ I_ u

u II
as h-~ 0+. (3.5 )

4. EXTENSIONS TO ARBITRARY SIMPLICES

So far we have considered the Euler-Maclaurin expansions for the
standard simplex T. The results of Sections 2 and 3 can be extended to
integrals of the form

QI g 1= LI r(¢. 17) g(¢. 17) d¢ d17, (4.1)
. r·

where T is the triangle with vertices Pi = (¢i' '7;), i = 1,2.3. and r(¢. '7) =
IA¢+B'7+C]' (logIA¢+B'7+ClY', s>-I, s'=O,I, such that
A¢ + BI7 + C = 0 is the equation of the straight line joining P I and P 2' and
g(';, '7) is infinitely differentiable over T. Using a transformation of the form
"[= u.~ + iJ. where "[= (~), x= C), and b= (~~), and U is a 2 X 2 constant
matrix, T can be mapped onto Twith PI --> (0,0) and P 2 --> (0, I). The results
of Sections 2 and 3 can now be applied to the transformed integral.

Bearing the results of the previous paragraph in mind, Euler-Maclaurin
expansions can be derived for an arbitrary quadrilateral domain along one of
whose diagonals the integrand has algebraic and/or logarithmic singularities.
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This can be accomplished by treating the two triangles on both sides of the
diagonal of singularities separately. One such typical integral is ,Iii I'i, i x -- .I'

(log Ix - .1')' g(x, .1') dx dy. where I> l. I' 0, l. which was the problem
originally solved by the author (see Sidi 171).

5. EULER-MACLAURIN EXPA:\SIONS FOR Q' If i

In this section we state the Euler-Maclaurin expansions tll the Il1tegrai

Q'III·

THEOREM 5.1. Lei fix . .1') be i/!/inile/y dijj'erenliab/e on
be 11\'0.fixed conslanls such Ihal 0 ~ I:,~ I, 0 < /1 ~ I. Lei h
a POlilice inleger. DeJine

r. Lei lund /1
l/n. I\'here n i\

" I

Q;,lfl = h' \. IrUh t /lh) ~ fUh + /lh.jh + ,:h). (5. i I
i 1\

( I) For s' = 0,

i (I

u I tI II

(2) For s' = l.

as h ,0 +. (5.2 )

j~III ~ \. A~h'i +Iogh \' B~h" , It \. C:,h"

" I " (I
II 1)

as h.O-;. (5.3)

(3) Fors'=l.s=O.

~1;,lfl ~ ~ A,;' h" +- log h ~ H,;' h'" I

u 1 H lJ

as h ,0+. 15.4 )

where A". HIi ..... are a// independenl of h and depend so/ely 011 f(x. Y) alld ils
derimril'es and Iheir inlegra/s.

Prao/ Since the proofs of (5.2). (5.3), and (5.4) are very similar to those
of Theorems 2.1. 3.1. and 3.2, respectively. we shall be content with a sketch
of the proof of (5.2) only. Defining

I

F(x) = Inx,y) (~)'.
• (l
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we can express Q' IJ I as

.1

Q'IJI = I x'F(x) dx.
• 0

By Theorem 1.2 we have for any positive integer m

11 1

Q IJI h \' ..\' I
, = _.x F(X)lx ih''I h

i 0

51

(5.6 )

as h - + 0+.

(5.7 )

We now approximate F(ih + 'lh) by the generalized trapezoidal rule. From
Theorem 1.1 we have

11 1

F(ih + 'lh) = h \. J(ih + Ilh.jh + I;h)
i 0

where

and

p= O. I..... (5.9 )

I T 2m . i ~ i'v!'m max
(X,y)c 1 I

',2m
C '
~J(x.y)i h 2m

.
I r:y- I !

(5.10)

From here on the proof continues exactly as that of Theorem 2.1. In
summary. defining o;,'(x) as in Section 2 (with F(x). ~/I'(x) as defined in (5.5)
and (5.9)) we obtain

k = 1.2.....

(5.11 )

k = 0.1... .. I
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Wk,i1 f(x.)') is a polynomial in x and y of degree q, say, then B k = 0 for
k? q + 2.

If we let /: = 'I =c 1, then A k = 0, k = L 3,5,....

If we let (a) E = II = I, or (b) E = 1and II = L or (c) /: = I and 17 =~. then
none of the A k's vanish in general. However, if Q~ If I in (5.1) is modified to
read, respectively.

or

Q;,lfl=h 2 \"w(ih) \'''f(ih.jh),
i I ; ()

" I

Q~lfl = h 2
\" w(ih) ~ f(ih.jh + h/2).
iii 0

(5.12a)

(5.12b)

" I

Q;,lfl=h 2
\' 1\'(ih+h/2) \'''f(ih+h/Ljh). (5.12c)
i () j ()

where L'~ I (Xi = L~ II (Xi + aj2, then. using the same techniques as before.
it can be shown that

,1;, If I= Q'lfl- Q;,lfl

= \' A, h 2u + \' Buh u " I
_ -,1.1 _

t1 I t1 ()

as h· 0+. (5.13 )

Similar analysis can be done for s' = I also. Details will not be given here.

6. CONCLUDING REMARKS

In this work Euler-Maclaurin expansions for the integrals given in
( 1.1 )-( 1.2) were derived and their nature was analyzed. These expansions
can now be used to obtain good approximations to the integrals in question
by applying to them a generalization of the Richardson extrapolation process
(see Sidi 16 I). A detailed discussion about how this should be done and some
numerical examples can be found in Sidi 171.

Euler-Maclaurin expansions for singular multiple integrals over a
hypercube have been taken up by Lyness II I, where the integrand is assumed
to have a singularity at a corner of the hypercube. Lately, Monegato and
Lyness 131 have considered the question of numerically evaluating the
Cauchy principal value of integrals of the form .UI .1'(\ g(x, y)/(x- y) dx dy.
More recently Lyness and Monegato 121 have given Euler-Maclaurin
expansions for integrals over the hypersimplex. whose integrands have
singularities at the vertices of the hypersimplex. The integrals treated in this
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work, however, are not of either type; they have algebraic and/or logarithmic
singularities over a straight line inside or on the boundary of the domain of
integration.
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